Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Curr Res Struct Biol ; 7: 100137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500801

RESUMEN

KvAP is a prokaryotic Kv channel, which has been widely used as a model system to understand voltage- and lipid-dependent gating mechanisms. In phospholipid membranes, the KvAP-VSD adopts the activated/'Up' conformation, whereas the presence of non-phospholipids in membranes favours the structural transition to resting/'Down' state. The S3b-S4 paddle motif loop of KvAP-VSD is functionally important as this participates in protein-protein interactions and is the target for animal toxins. In this study, we have monitored the modulatory role of cholesterol - the physiologically-relevant non-phospholipid - on the organization and dynamics of the S3b-S4 loop of the isolated KvAP-VSD in membranes by site-directed fluorescence approaches using the environmental sensitivity of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-ethylenediamine (NBD) fluorescence. Our results show that cholesterol alters the dynamic nature (rotational and hydration dynamics) of S3b-S4 loop in a segmental fashion, i.e., the residues 110 to 114 and 115 to 117 behave differently in the presence of cholesterol, which is accompanied by considerable change in conformational heterogeneity. Further, quantitative depth measurements using the parallax quenching method reveal that the sensor loop is located at the shallow interfacial region of cholesterol-containing membranes, suggesting that the sensor loop organization is not directly correlated with S4 helix movement. Our results clearly show that cholesterol-induced changes in bilayer properties may not be the predominant factor for the sensor loop's altered structural dynamics, but can be attributed to the conformational change of the KvAP-VSD in cholesterol-containing membranes. Overall, these results are relevant for gating mechanisms, particularly the lipid-dependent gating, of Kv channels in membranes.

2.
World Neurosurg ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38360208

RESUMEN

OBJECTIVE: We report our early clinical experience with image-guided, pencil beam scanning proton beam therapy (PBS-PBT) for residual and recurrent craniopharyngioma. METHODS: Between September 2019 and January 2023, 19 consecutive patients with residual or recurrent craniopharyngioma, suitable for radiotherapy and treated with image-guided PBS-PBT were analyzed. We documented detailed dosimetric data, acute toxicities, early outcomes, and imaging response on follow-up magnetic resonance imaging scans. RESULTS: A total of 19 patients (11 males and 8 females) with residual or recurrent craniopharyngioma were treated during the study period. The median age of the cohort was 14 years (range, 3-33 years). The histology of most lesions was the adamantinomatous subtype (95%). The most common clinical presentation (before PBT) and most common endocrine deficit was visual disturbance (79%) and hypocortisolism (74%), respectively. Of the 19 patients, 13 had recurrent craniopharyngioma, and 5 had undergone radiotherapy previously. Five patients (26%) had undergone surgery ≥3 times before proton therapy. The median dose delivered was 54 GyE. The most common acute toxicity was grade 1 alopecia (63%). No patient experienced grade ≥3 acute toxicity. With a median follow-up of 18 months (range, 3-40 months), 12 patients showed shrinkage of the residual tumor and/or cyst, and 4 showed a dramatic cyst reduction at 3-9 months of follow-up. Two patients experienced a reduction in both solid and cystic components, with the remaining experiencing a reduction in the cystic component only. The remaining 8 patients had stable disease on magnetic resonance imaging, with 100% disease control and overall survival. Visual function remained stable after treatment. CONCLUSIONS: Our preliminary experience with modern PBS-PBT and image guidance for craniopharyngioma is encouraging. Proton therapy in our cohort was well tolerated, resulting in limited toxicity and promising early outcomes.

3.
Angew Chem Int Ed Engl ; 63(15): e202400486, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38265331

RESUMEN

In biological systems, programmable supramolecular frameworks characterized by coordinated directional non-covalent interactions are widespread. However, only a small number of reports involve pure water-based dynamic supramolecular assembly of artificial π-amphiphiles, primarily due to the formidable challenge of counteracting the strong hydrophobic dominance of the π-surface in water, leading to undesired kinetic traps. This study reveals the pathway complexity in hydrogen-bonding-mediated supramolecular polymerization of an amide-functionalized naphthalene monoimide (NMI) building block with a hydrophilic oligo-oxyethylene (OE) wedge. O-NMI-2 initially produced entropically driven, collapsed spherical particles in water (Agg-1); however, over a span of 72 h, these metastable Agg-1 gradually transformed into two-dimensional (2D) nanosheets (Agg-2), favoured by both entropy and enthalpy contributions. The intricate self-assembly pathways in O-NMI-2 enable us to explore seed-induced living supramolecular polymerization (LSP) in water for controlled synthesis of monolayered 2D assemblies. Furthermore, we demonstrated the nonspecific surface adsorption of a model enzyme, serine protease α-Chymotrypsin (α-ChT), and consequently the enzyme activity, which could be regulated by controlling the morphological transformation of O-NMI-2 from Agg-1 to Agg-2. We delve into the thermodynamic aspects of such shape-dependent protein-surface interactions and unravel the impact of seed-induced LSP on temporally controlling the catalytic activity of α-ChT.


Asunto(s)
Proteínas , Agua , Polimerizacion , Agua/química , Adsorción , Termodinámica
4.
Radiat Environ Biophys ; 63(1): 71-80, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38078988

RESUMEN

This study aims to compare dose escalation between two groups of reirradiated cancer patients, one with the previous contour and radiotherapy plan available on the treatment planning system and the other without. First group is identified as DICOM-group, while the other one is called non-DICOM group. The current study included 89 patients, 57 in the DICOM, and 32 in the non-DICOM group, who received reirradiation for recurrent or second primary tumours between 2019 and 2021. For the DICOM group, doses to 0.2cc volume for spine, brainstem, and optic apparatus from first radiation were converted into structures and transferred to reirradiation CT using deformable registration. First, one radiotherapy plan was created using the doctor prescribed dose (baseline prescription RxD_B); further an escalated dose (RxD_E) plan, taking into account all the dose volume parameters from previous radiation, was created only for DICOM group. In non-DICOM group patients were planned only for RxD_B. The maximum accepted dose escalation was 21 Gy. Radiotherapy prescription dose during earlier (first) treatment in DICOM and non-DICOM groups were 61 ± 5.6 Gy and 30-66 Gy, respectively. DICOM and non-DICOM groups had nearly identical baseline doses: 52.5 ± 10.7 Gy and 50.6 ± 6.9 Gy (difference 1.9 ± 12.7 Gy). Dose escalation was possible for 51 out of 57 patients in the DICOM-group. Average escalated dose in DICOM-group was 59.2 ± 6.2 Gy, with an incremental dose of 6.7 ± 12.4 Gy from the baseline prescription. No dose escalation was opted for in the non-DICOM group due to the unavailability of dose volume information from previous radiation. Reirradiation for head and neck cases allowed for a moderate to high dose escalation, facilitated by the presence of pertinent DICOM information from the initial radiotherapy.


Asunto(s)
Neoplasias , Planificación de la Radioterapia Asistida por Computador , Humanos , Dosificación Radioterapéutica , Neoplasias/radioterapia
5.
Cells ; 12(24)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38132140

RESUMEN

The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.


Asunto(s)
Diabetes Mellitus , Lagomorpha , MicroARNs , Daño por Reperfusión Miocárdica , ARN Largo no Codificante , Animales , Humanos , Conejos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero , MicroARNs/genética , MicroARNs/metabolismo , Lagomorpha/genética , Lagomorpha/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Isquemia , Proteínas Proto-Oncogénicas c-bcl-2
6.
Diagnostics (Basel) ; 13(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37958274

RESUMEN

Medulloblastoma is the most common malignant brain tumour in children, while much rarer in adults. Although the prognosis and outcomes have greatly improved in the era of modern multidisciplinary management, long-term treatment-induced toxicities are common. Craniospinal irradiation followed by a boost to the primary and metastatic tumour sites forms the backbone of treatment. Proton therapy has been endorsed over conventional photon-based radiotherapy due to its superior dosimetric advantages and subsequently lower incidence and severity of toxicities. We report here our experience from South-East Asia's first proton therapy centre of treating 40 patients with medulloblastoma (38 children and adolescents, 2 adults) who received image-guided, intensity-modulated proton therapy with pencil-beam scanning between 2019 and 2023, with a focus on dosimetry, acute toxicities, and early survival outcomes. All patients could complete the planned course of proton therapy, with mostly mild acute toxicities that were manageable on an outpatient basis. Haematological toxicity was not dose-limiting and did not prolong the overall treatment time. Preliminary data on early outcomes including overall survival and disease-free survival are encouraging, although a longer follow-up and data on long-term toxicities are needed.

7.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894760

RESUMEN

Diabetic cardiomyopathy is a critical diabetes-mediated co-morbidity characterized by cardiac dysfunction and heart failure, without predisposing hypertensive or atherosclerotic conditions. Metabolic insulin resistance, promoting hyperglycemia and hyperlipidemia, is the primary cause of diabetes-related disorders, but ambiguous tissue-specific insulin sensitivity has shed light on the importance of identifying a unified target paradigm for both the glycemic and non-glycemic context of type 2 diabetes (T2D). Several studies have indicated hyperactivation of the mammalian target of rapamycin (mTOR), specifically complex 1 (mTORC1), as a critical mediator of T2D pathophysiology by promoting insulin resistance, hyperlipidemia, inflammation, vasoconstriction, and stress. Moreover, mTORC1 inhibitors like rapamycin and their analogs have shown significant benefits in diabetes and related cardiac dysfunction. Recently, FDA-approved anti-hyperglycemic sodium-glucose co-transporter 2 inhibitors (SGLT2is) have gained therapeutic popularity for T2D and diabetic cardiomyopathy, even acknowledging the absence of SGLT2 channels in the heart. Recent studies have proposed SGLT2-independent drug mechanisms to ascertain their cardioprotective benefits by regulating sodium homeostasis and mimicking energy deprivation. In this review, we systematically discuss the role of mTORC1 as a unified, eminent target to treat T2D-mediated cardiac dysfunction and scrutinize whether SGLT2is can target mTORC1 signaling to benefit patients with diabetic cardiomyopathy. Further studies are warranted to establish the underlying cardioprotective mechanisms of SGLT2is under diabetic conditions, with selective inhibition of cardiac mTORC1 but the concomitant activation of mTORC2 (mTOR complex 2) signaling.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Hiperlipidemias , Resistencia a la Insulina , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Cardiomiopatías Diabéticas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transportador 2 de Sodio-Glucosa , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Sodio/metabolismo , Hiperlipidemias/tratamiento farmacológico
8.
Angew Chem Int Ed Engl ; 62(49): e202314290, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37842911

RESUMEN

Achieving predictable and programmable two-dimensional (2D) structures with specific functions from exclusively organic soft materials remains a scientific challenge. This article unravels stereocomplex crystallization-driven self-assembly as a facile method for producing thermally robust discrete 2D-platelets of diamond shape from biodegradable semicrystalline polylactide (PLA) scaffolds. The method involves co-assembling two PLA stereoisomers, namely, PY-PDLA and NMI-PLLA, which form stereocomplex (SC)-crystals in isopropanol. By conjugating a well-known Förster resonance energy transfer (FRET) donor and acceptor dye, namely, pyrene (PY) and naphthalene monoimide (NMI), respectively, to the chain termini of these two interacting stereoisomers, a thermally robust FRET process can be stimulated from the 2D array of the co-assembled dyes on the thermally resilient SC-PLA crystal surfaces. Uniquely, by decorating the surface of the SC-PLA crystals with an externally immobilized guest dye, Rhodamine-B, similar diamond-shaped structures could be produced that exhibit pure white-light emission through a surface-induced two-step cascade energy transfer process. The FRET response in these systems displays remarkable dependence on the intrinsic crystalline packing, which could be modulated by the chirality of the co-assembling PLA chains. This is supported by comparing the properties of similar 2D platelets generated from two homochiral PLLAs (PY-PLLA and NMI-PLLA) labeled with the same FRET pair.

9.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686434

RESUMEN

The mechanistic/mammalian target of rapamycin (mTOR), a member of the phosphoinositide 3-kinase (PI3K) related kinase family, integrates intracellular and environmental cues that coordinate a diverse set of cellular/tissue functions, such as cell growth, proliferation, metabolism, autophagy, apoptosis, longevity, protein/lipid/nucleotide synthesis, and tissue regeneration and repair [...].


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Neoplasias , Humanos , Enfermedades Cardiovasculares/etiología , Fosfatidilinositol 3-Quinasas , Serina-Treonina Quinasas TOR
10.
Nature ; 623(7986): 375-380, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37758948

RESUMEN

Hunger, thirst, loneliness and ambition determine the reward value of food, water, social interaction and performance outcome1. Dopamine neurons respond to rewards meeting these diverse needs2-8, but it remains unclear how behaviour and dopamine signals change as priorities change with new opportunities in the environment. One possibility is that dopamine signals for distinct drives are routed to distinct dopamine pathways9,10. Another possibility is that dopamine signals in a given pathway are dynamically tuned to rewards set by the current priority. Here we used electrophysiology and fibre photometry to test how dopamine signals associated with quenching thirst, singing a good song and courting a mate change as male zebra finches (Taeniopygia guttata) were provided with opportunities to retrieve water, evaluate song performance or court a female. When alone, water reward signals were observed in two mesostriatal pathways but singing-related performance error signals were routed to Area X, a striatal nucleus specialized for singing. When courting a female, water seeking was reduced and dopamine responses to both water and song performance outcomes diminished. Instead, dopamine signals in Area X were driven by female calls timed with the courtship song. Thus the dopamine system handled coexisting drives by routing vocal performance and social feedback signals to a striatal area for communication and by flexibly re-tuning to rewards set by the prioritized drive.


Asunto(s)
Encéfalo , Cortejo , Dopamina , Neuronas Dopaminérgicas , Retroalimentación Fisiológica , Retroalimentación Psicológica , Pinzones , Animales , Femenino , Masculino , Dopamina/metabolismo , Pinzones/fisiología , Vocalización Animal/fisiología , Agua , Retroalimentación Fisiológica/fisiología , Ingestión de Líquidos/fisiología , Sed/fisiología , Neuronas Dopaminérgicas/metabolismo , Electrofisiología , Encéfalo/citología , Encéfalo/fisiología , Comunicación , Recompensa , Retroalimentación Psicológica/fisiología
11.
Microorganisms ; 11(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764190

RESUMEN

Transfusion-transmitted bacterial infection (TTBI) is the leading cause of transfusion-transmitted infections. Platelet components are more likely to be associated with bacterial contamination due to their storage requirements. Australian Red Cross Lifeblood introduced the bacterial contamination screening (BCS) of all platelet components in 2008. The process was recently updated with the use of BACT/ALERT® VIRTUO®, a large-volume delayed sampling (LVDS) protocol and extending platelet shelf-life to seven days. This article describes the results from the routine BCS of platelet components in Australia. Use of VIRTUO has resulted in lower false-positive rates, reducing wastage and improving platelet inventory. Our findings show that the combination of LVDS and VIRTUO improves the safety of platelet transfusions through earlier time to detection, especially for pathogenic bacterial species. Pathogenic bacteria grew within 24 h of incubation with a clear delineation between pathogenic and non-pathogenic species. The data show this protocol is very safe, with no TTBI cases during this time. There were no TTBI reports in recipients of platelet components that subsequently had a positive culture with Cutibacterium species, probably due to the low pathogenic potential of these organisms and slow replication in aerobic platelet bags. We conclude there is no advantage in incubating culture bottles beyond five days.

12.
Proteins ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526035

RESUMEN

Kainate receptors are a subtype of ionotropic glutamate receptors that form transmembrane channels upon binding glutamate. Here, we have investigated the mechanism of partial agonism in heteromeric GluK2/K5 receptors, where the GluK2 and GluK5 subunits have distinct agonist binding profiles. Using single-molecule Förster resonance energy transfer, we found that at the bi-lobed agonist-binding domain, the partial agonist AMPA-bound receptor occupied intermediate cleft closure conformational states at the GluK2 cleft, compared to the more open cleft conformations in apo form and more closed cleft conformations in the full agonist glutamate-bound form. In contrast, there is no significant difference in cleft closure states at the GluK5 agonist-binding domain between the partial agonist AMPA- and full agonist glutamate-bound states. Additionally, unlike the glutamate-bound state, the dimer interface at the agonist-binding domain is not decoupled in the AMPA-bound state. Our findings suggest that partial agonism observed with AMPA binding is mediated primarily due to differences in the GluK2 subunit, highlighting the distinct contributions of the subunits towards activation.

13.
Nanomedicine (Lond) ; 18(6): 555-576, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37199287

RESUMEN

Optical imaging modalities have emerged as a keystone in oncological research, capable of providing molecular and cellular information on cancer with the advantage of being minimally invasive toward healthy tissues. Photothermal therapy (PTT) has shown great potential, with the exceptional advantages of high specificity and noninvasiveness. Combining surface-enhanced Raman spectroscopy (SERS)-based optical imaging with PTT has shown tremendous potential in cancer theranostics (therapeutics + diagnosis). This comprehensive review article provides up-to-date information by exploring recent works focused mainly on the development of plasmonic nanoparticles for medical applications using SERS-guided PTT, including the fundamental principles behind SERS and the plasmon heating effect for PTT.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Medicina de Precisión , Terapia Fototérmica , Espectrometría Raman/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Nanopartículas/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Oro/química
14.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240345

RESUMEN

Robust activation of mTOR (mammalian target of rapamycin) signaling in diabetes exacerbates myocardial injury following lethal ischemia due to accelerated cardiomyocyte death with cardiac remodeling and inflammatory responses. We examined the effect of rapamycin (RAPA, mTOR inhibitor) on cardiac remodeling and inflammation following myocardial ischemia/reperfusion (I/R) injury in diabetic rabbits. Diabetic rabbits (DM) were subjected to 45 min of ischemia and 10 days of reperfusion by inflating/deflating a previously implanted hydraulic balloon occluder. RAPA (0.25 mg/kg, i.v.) or DMSO (vehicle) was infused 5 min before the onset of reperfusion. Post-I/R left ventricular (LV) function was assessed by echocardiography and fibrosis was evaluated by picrosirius red staining. Treatment with RAPA preserved LV ejection fraction and reduced fibrosis. Immunoblot and real-time PCR revealed that RAPA treatment inhibited several fibrosis markers (TGF-ß, Galectin-3, MYH, p-SMAD). Furthermore, immunofluorescence staining revealed the attenuation of post-I/R NLRP3-inflammasome formation with RAPA treatment as shown by reduced aggregation of apoptosis speck-like protein with a caspase recruitment domain and active-form of caspase-1 in cardiomyocytes. In conclusion, our study suggests that acute reperfusion therapy with RAPA may be a viable strategy to preserve cardiac function with the alleviation of adverse post-infarct myocardial remodeling and inflammation in diabetic patients.


Asunto(s)
Diabetes Mellitus , Daño por Reperfusión Miocárdica , Animales , Conejos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Remodelación Ventricular , Miocitos Cardíacos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Diabetes Mellitus/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Isquemia/patología , Fibrosis , Mamíferos/metabolismo
15.
Nanoscale ; 15(15): 6934-6940, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37009838

RESUMEN

Atomically precise gold clusters have attracted considerable research interest as their tunable structure-property relationships have resulted in widespread applications, from sensing and biomedicine to energetic materials and catalysis. In this article, the synthesis and optical properties of a novel [Au6(SbP3)2][PF6]2 cluster are reported. Despite the lack of spherical symmetry in the core, the cluster shows exceptional thermal and chemical stability. Detailed structural attributes and optical properties are evaluated experimentally and theoretically. This, to the best of our knowledge, is the first report of a gold cluster protected via synergistic multidentate coordination of stibine (Sb) and phosphine moieties (P). To further show that the latter moieties give a set of unique properties that differs from monodentate phosphine-protected [Au6(PPh3)6]2+, geometric structure, electronic structure, and optical properties are analyzed theoretically. In addition, this report also demonstrates the critical role of overall-ligand architecture in stabilizing mixed ligand-protected gold clusters.

16.
Small ; 19(24): e2300097, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36905236

RESUMEN

The biological properties of spherical nucleic acids (SNAs) are largely independent of nanoparticle core identity but significantly affected by oligonucleotide surface density. Additionally, the payload-to-carrier (i.e., DNA-to-nanoparticle) mass ratio of SNAs is inversely proportional to core size. While SNAs with many core types and sizes have been developed, all in vivo analyses of SNA behavior have been limited to cores >10 nm in diameter. However, "ultrasmall" nanoparticle constructs (<10 nm diameter) can exhibit increased payload-to-carrier ratios, reduced liver accumulation, renal clearance, and enhanced tumor infiltration. Therefore, we hypothesized that SNAs with ultrasmall cores exhibit SNA-like properties, but with in vivo behavior akin to traditional ultrasmall nanoparticles. To investigate, we compared the behavior of SNAs with 1.4-nm Au102 nanocluster cores (AuNC-SNAs) and SNAs with 10-nm gold nanoparticle cores (AuNP-SNAs). Significantly, AuNC-SNAs possess SNA-like properties (e.g., high cellular uptake, low cytotoxicity) but show distinct in vivo behavior. When intravenously injected in mice, AuNC-SNAs display prolonged blood circulation, lower liver accumulation, and higher tumor accumulation than AuNP-SNAs. Thus, SNA-like properties persist at the sub-10-nm length scale and oligonucleotide arrangement and surface density are responsible for the biological properties of SNAs. This work has implications for the design of new nanocarriers for therapeutic applications.


Asunto(s)
Nanopartículas del Metal , Ácidos Nucleicos , Animales , Ratones , Oro , Hígado , Oligonucleótidos
17.
Bioresour Technol ; 376: 128884, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36925081

RESUMEN

For a sustainable biorefinery, reduction in the recalcitrance of lignocellulosic biomass is very crucial for the efficient utilization of each fraction. The present work investigated an integrated pretreatment method to recover high-quality lignin along with the cellulose-rich pulp. An optimization study employing response surface methodology investigated the synergistic effects of ultrasound and organosolv pretreatment from Bambusa tulda (bamboo). The optimal condition (180 °C, 55 min, and 30 min sonication) resulted in 65.81 ± 2.40% of lignin yield with 95.37 ± 1.17% purity. A reduction in 7.85% yield and 1.54% purity of lignin with organosolv pretreatment highlighted the efficacy of sonication in lignin extraction. Ultrasound resulted in homolytic cleavage of the lignin-carbohydrate bond that enhanced delignification and increase the cellulose crystallinity. NMR, FTIR, GPC, and TGA of lignin suggested the superiority of sonication in maintaining lignin quality. A significant amount of ß-O-4 linkages in extracted lignin is favorable for its subsequent valorization.


Asunto(s)
Celulosa , Lignina , Lignina/química , Hidrólisis , Espectroscopía de Resonancia Magnética , Biomasa
18.
J Am Chem Soc ; 145(9): 5270-5284, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36797682

RESUMEN

This study unravels the intricate kinetic and thermodynamic pathways involved in the supramolecular copolymerization of the two chiral dipolar naphthalene monoimide (NMI) building blocks (O-NMI and S-NMI), differing merely by a single heteroatom (oxygen vs sulfur). O-NMI exhibits distinct supramolecular polymerization features as compared to S-NMI in terms of its pathway complexity, hierarchical organization, and chiroptical properties. Two distinct self-assembly pathways in O-NMI occur due to the interplay between the competing dipolar interactions among the NMI chromophores and amide-amide hydrogen (H)-bonding that engenders distinct nanotapes and helical fibers, from its antiparallel and parallel stacking modes, respectively. In contrast, the propensity of S-NMI to form only a stable spherical assembly is ascribed to its much stronger amide-amide H-bonding, which outperforms other competing interactions. Under the thermodynamic route, an equimolar mixture of the two monomers generates a temporally controlled chiral statistical supramolecular copolymer that autocatalytically evolves from an initially formed metastable spherical heterostructure. In contrast, the sequence-controlled addition of the two monomers leads to the kinetically driven hetero-seeded block copolymerization. The ability to trap O-NMI in a metastable state allows its secondary nucleation from the surface of the thermodynamically stable S-NMI spherical "seed", which leads to the core-multiarmed "star" copolymer with reversibly and temporally controllable length of the growing O-NMI "arms" from the S-NMI "core". Unlike the one-dimensional self-assembly of O-NMI and its random co-assembly with S-NMI, which are both chiral, unprecedentedly, the preferred helical bias of the nucleating O-NMI fibers is completely inhibited by the absence of stereoregularity of the S-NMI "seed" in the "star" topology.

19.
Chemistry ; 29(16): e202203849, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36511092

RESUMEN

This work describes a versatile and efficient condensation polymerization route to aliphatic polyesters by organo-catalyzed (4-dimethylaminopyridine) transesterification reactions between an activated pentafluorophenyl-diester of adipic acid and structurally different diols. By introducing "monofunctional impurity" or "stoichiometric imbalance," this methodology can afford well-defined end-functionalized polyesters with predictable molecular weights and narrow dispersity under mild conditions without any necessity for the removal of the byproducts to accelerate the polymerization reaction, which remains a major challenge in conventional polyester synthesis with non-activated diesters. Wide substrate scope with structurally different monomers and the synthesis of block copolymers by chain extension following either ring-opening polymerization or controlled radical polymerization have been successfully demonstrated. Some of the polyesters synthesized by this newly introduced approach show high thermal stability, crystallinity, and enzymatic degradation in aqueous environments.

20.
Macromol Rapid Commun ; 44(11): e2200751, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36413748

RESUMEN

Emissive covalent organic frameworks (COFs) have recently emerged as next-generation porous materials with attractive properties such as tunable topology, porosity, and inherent photoluminescence. Among the different types of COFs, substoichiometric frameworks (so-called Type III COFs) are especially attractive due to the possibility of not only generating unusual topology and complex pore architectures but also facilitating the introduction of well-defined functional groups at precise locations for desired functions. Herein, the first example of a highly emissive (PLQY 6.8%) substoichiometric 2D-COF (COF-SMU-1) featuring free uncondensed aldehyde groups is reported. In particular, COF-SMU-1 features a dual-pore architecture with an overall bex net topology, tunable emission in various organic solvents, and distinct colorimetric changes in the presence of water. To gain further insights into its photoluminescence properties, the charge transfer, excimer emission, and excited state exciton dynamics of COF-SMU-1 are investigated using femtosecond transient absorption spectroscopy in different organic solvents. Additionally, highly enhanced atmospheric water-harvesting properties of COF-SMU-1 are revealed using FT-IR and water sorption studies.The findings will not only lead to in-depth understanding of structure-property relationships in emissive COFs but also open new opportunities for designing COFs for potential applications in solid-state lighting and water harvesting.


Asunto(s)
Estructuras Metalorgánicas , Agua , Espectroscopía Infrarroja por Transformada de Fourier , Aldehídos , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...